
A comparison with data obtained with the contlnuous-flow calorimeter shows that for an 
Ar--He mixture at a pressure of 10 bar, the excess enthalpy is approximately three times as 
large as the excess enthalpy of this mixture at a pressure of 18.4 bar and a 0.26 mole frac- 
tion of Ar, according to data in [8]. 

NOTATION 

p, pressure of gaseous mixture; Ap, change in pressure during mixing; V, volume of mix- 
ture; V E, excess volume, QT,V, heat of mixing at constant volume and temperature; H E , excess 
enthalpy; h E, molar excess enthalpy; T, absolute temperature; R, universal gas constant. 
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MEASUREMENT OF THERMOPHYSICAL PROPERTIES OF MIXTURES BY PERIODIC 

HEATING OF PROBES 

S. N. Kravchun UDC 536. 223 

We analyze the theory of the method of periodic heating of probes as applied to 
the study of thermophysical properties of liquid and gaseous mixtures. 

One of the promising methods of investigating thermmphysical properties of fluids is the 
method of the periodic heating of probes [1-4]. The gist of the method consists in the re- 
cording of temperature fluctuations of a probe (wire or metal foil) when heated by an alter- 
nating current, The amplitude and phase of the temperature fluctuations of the probe depend 
on the thermophysical properties of the fluid in which it is immersed (on the thermal conduc- 
tivity % and the volumetric heat capacity Cpp for a cylindrical probe, and on the thermal 
activity b = ~/~Cp~ for a plane probe). The measurement of the amplitude and phase of the tem- 
perature fluctuations of the probe by electronic means makes it possible to determine these 
thermophysical characteristics. The method developed can be used to study the thermophysical 
properties of pure gases andliquids over awiderangeof states [i]. The application of the method of 
periodic heating to the investigation of solutions requires extension of the theory of the 
method. 

It is well known that in gaseous and liquid mixtures a temperature gradient gives rise 
not only to a heat flux, but also to a diffusive flux (thermal diffusion, the Sorer effect). 
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On the other hand a concentration gradient causes not only a diffusive flux, but also a heat 
flux (diffusion heat conduction, the Dufour effect). The presence of cross effects compli- 
cates the heat-transfer process [5]. This is reflected in the introduction of two thermal 
conductivities to describe heat transfer in mixtures: Xo -- the thermal conductivity of a sys- 
tem of uniform concentration, and ~ -- the thermal conductivity of a system in a stationary 
state when the concentration distribution produced by the temperature gradient has been 
established and the diffusive flux is equal to zero. The difference between Xo and X is not 
negligible, at least for gases. Thus, for example, under normal conditions it may reach ~1.9% 
for a He--At mixture, ~2.4% for He--Xe, and ~1.7% for He--Kr [5]. The necessity of taking ac- 
count of the contribution of diffusion heat conduction in solid solutions was pointed out in [6]. 

Steady-state methods of investigating thermal conductivity (the plane layer method, co- 
axial cylinders, etc.) can be used to measure X~. It was shown in [7] that the method based 
on the recording of the temperature of a wire probe fed a step voltage records this same 
quantity. The question naturally arises as to which thermal conductivity is measured by the 
method of periodic (sinusoidal) heating. 

For a stationary binary mixture the expressions for the heat and mass fluxes have the 
form [8] 

Jq = -- ZoV T -- 91 TD'vci, (l) 
ac~ 

J1 = _ ctc2D, vT__ DVCi" (2) 
P 

It is clear from Eq. (i) that Xo relates the heat flux and the temperature gradient for 
Vc, = 0 (i.e., for a homogeneous system). In the stationary state (J:/p = 0), we have 

Vct =--cic~(D"/D)vT, 

and substitution of the last relation into (i) gives 

( 0~ TD'c~c2 D--~D) VT" Jq = - -  ~o- -0 t  OC i 

The coefficient of proportionality in this case is X~. The relation between the thermal con- 
ductivities %o and %~ (taking account of the Onsager reciprocal relations D' = D") is thus 
expressed by the equality 

~o -- Z. : c~c29t 
Oci 

In a c c o r d  w i t h  Eqs.  (1) and (2) t h e  h e a t - c o n d u c t i o n  

OT 
p c ,  - -  = ~,oVZT + p~ 

Ot 

0ct ctc2D, v~ T 
dt 

0'2 
T-- 

D 

and diffusion equations have the form 

OPt!_ TD' v2ci, 
Oc~ 

-~ DvZci. 

(3) 

(4) 

When a probe is heated by an alternating current of frequency ~,  its temperature and that of 
the surrounding medium fluctuate with a frequency 2~, and the concentration fluctuates with 
this same frequency. In a steady periodic process the temperature T and the concentration ci 
can be written as the sum of a constant component independent of time and a fluctuating component: 

Y : T + O exp (2i~t), c~ = ~ + ~ exp (2i~t). 

Substituting these expressions into (3) and (4) and combining the results, we obtain the 
following system of equations for the fluctuating components: 

2ico ~ 7' 2ico 
vzO = 0 , 

a0(l -- ~) I--~ Kr D ?' (5) 

2ico 2ico KT 0, (6) 
V27 = ? -- 

D(I--~) ao(l - -~)  T 

where do = lo/Cpp, = (Xo- X~)/Xo and K T = (D'/D)c,c~T. 
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Let us consider first the ease of a plane metal foil probe (the method of measuring the 
coefficient of thermal activity). We seek the solution in the form 

O = Ai exp (-- six) + A2 exp (-- sox) (7) 

(damped plane waves). The general form of the solution for y follows from (5) and (7). Sub- 
stituting this together with (7) into Eq. (6), we obtain the characteristic equation. Its 
root corresponding to the solution which is damped at infinity is 

1 

2ico (1 + q) 1• 1 4q(1 --~) Y (8) 
s~,2= ao(1--~)2q (l+q)Z ' 

where q = D/ao. Using the boundary condition J~(0)/p = 0 (no diffusive flux through the sur- 
face of the probe), which in the previously introduced notation takes the form 

KT 
- - "  vOI ~=o + VY[~=o = O, T 

and the condition 0 ( 0 )  = 80, where Oo is the amplitude of 
probe, it is easy to determine the coefficients A: and A~ 
8: 

0 (x) = 0o [exp (-- ~x) s~(1 -- Ns]) ] s2 (1 --  Na~) exp (-- %x) 

(9) 

the temperature fluctuations of the 
. Thus, we obtain the solution for 

[1 s~ (1 --N~z]) ]-~, (i0) 
s~(1 --N~) 

where N = ao(l -- ~)/[2im(l + ~/q)]. It follows from (i0) that 

d0 I =__0o F '  2i~ ] /  l + q + 2 V -  q ( l - - ~  (ii) 
dx x=o ao(1--~) ] / - - # - + V  1 . ~  

Taking account of (9), we write the expression for the heat flux (i) from the surface of the 
probe in the form 

S'~q (0) -- -- %o (1 ~) V0I x=o = --  %| x=o. (12) 

Subs t i tu t ing  ( 1 1 ) i n t o  (12), using the fac t  that  ~ = (Xo --X~)/ko is  a small quant i ty ,  and 
limiting ourselves to terms linear in ~, we obtain 

+q(o) = %=0~ V i/ -~-~- + 1 + ~(1 + ] f ~ ) - 2  

Using the last expression and the heat-balanoe equation for the probe [9] 

W/s = (2c' m%i/s) Oo -F 2Jq (0) (13) 

(W is the power expended in the probe during electrical heating, s is the surface area of the 
probe, and c v' and m ~ are the specific heat and mass of the probe), it is possible to obtain 
an expression relating the amplitude of the temperature fluctuations of the probe to the 
properties of the medium in which it is located. In the present case the quantity playing 
the same role as the thermal activity in one-component media is 

b*= Vc-~- V %= [1 + (1-~-]/~ 1" (14) 

It is clear from Eq. (14) that b* is generally not directly related either to the thermal 
conductivity of a homogeneous system %o or to the stationary thermal conductivity ~, but 
depends on the thermal conductivity 1"9 whose value lies between them: l= < X* < %o. 

It should be noted that the measurable quantity does not depend on frequency, which 
eliminates the apparent possibility of going over from the measurement of ko to the measure- 
ment of ~ with decreasing frequency m of heating of the probe. This can be explained in the 
following way: 

The heat-conduction Eq. (3) and the diffusion Eq. (4) used to take account of the Dufour 
effect are similar. As a result of this similarity the fraction of diffusion test conduction 
in the total heat-transfer process remains constant during a change of frequency. This is 
confirmed by the following considerations. The characteristic time for heating by an alter- 
nating current is its period T. In order for a frequency dependence to be observed it is 
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necessary to cover a range of times shorter =han the ~ime of establish equilibrium of =he 
parameter being measured (the relaxation =ime Tr) =o times considerably longer =han i~. The 
characteristic time for the transition of the system from a homogeneous state characterized 
by %o to a stationary state characterized by ~. is determined by the relation [5]: Tr = La/ 

(~D), where L is a characteristic dimension. In probing a liquid by plane temperature waves 
the only characteristic dimension is =he attenua=ion distance of the ~emperature wave L = (~/ 
' ~ /2 ,  and consequently the relaxation time is rigorously related to the period of hea~ing ~r = 
(a/(2~*D))T, which eliminates the possibility of a change from �9 < rr to ~ > Tr. 

As has already been noted, the value of ~ for cer=ain gaseous mix=ures amoun=s to several 
percent. The ratio D/ao = q for moderately compressed and rarefied gases is of the order of 
unity. Thus, according to Eq. (14) the correction to ~| can reach -1%, and the measurable 
quantity b ~ is related to the thermal conductivity ~* lying in the middle part of the internal 
%o -- X~. 

The value of q for liquids is small in comparison with uni=y (q ~ 10-a-lO-~). Hence, 
%* = %| + E) = Xo: i.e., the measurable quantity b* is determined by the thermal conductivity 
close to the thermal conductivity of a homogeneous sys=em. 

Let us now consider the probing of a solution by cylindrical waves (the method for the 
simultaneous determination of the thermal conductivity ~, the volumetric heat capacity Cpp, 
and the related quantities the thermometric conduc=ivity a = X/Cpp and the thermal ac~ivi=y 
b = ~cr 

We seek the solution of the system of equations (5) and (6) in a cylindrical coordinate 
system in the form of damped cylindrical waves 0 = A~Ko(u~r) + AaKo(uar), where Ko(ur) is the 
modified Bessel function [i0]. 

The characteristic equation with roots (8) is obtained in the same way as for a plane 
probe, and using boundary condition (9), the coefficients A~ and Aa can be de~ermined. The 
solution has the form 

0 (r) = Oo 

Ko(~,r) - -  

Ko (~,ro) - 

~ziK, (oqro)(1 - -  N ~ )  
c~2K, (c~ro)(1 - -  No*~) Ko (~ r )  

a ,K,  (CZVo)(1 - -  Noel) 
%K, (~.,ro)(1 - -  N ~ )  Ko (c~ro) 

where 3Ko(ur)/~r = -uK~ (ur), and ro is the radius of the probe. Using this solution, an ex- 
pression can be obtained for the heat flux from the surface of the probe 

Ko (~ro) ~2 ( 1 - - N ~ )  - ~, (1 - -  N ~ ) ,  

w h e r e  ~ = KI ( ~ l r o ) K o ( a a r o ) / [ K o ( ~ l r o ) K ~  ( ~ a r o )  ] .  

Analysis of the general expression (15) is rather complicated, and therefore we at once 
take account of the fact that ~ << 1 for all gaseous and liquid mixtures with which we are 
familiar. We also assume that q < 0.5, which simplifies ~ha expressions for the roots of the 
characteristic equation 

2 2ko ~ o~ ~, 
~ 1 ~  ao(1---~) 1 - ; 1 + - - ~  . 1 - - q  D ( 1 - - ~ )  1 - - q  

The last restriction is a result of our excluding from consideration rarefied and moderately 
dense gases for which q ~ i. Analysis of the case q ~ 1 requires separate consideration. 
Taking account of the restrictions assumed, Eq. (15) is transformed go 

' Jq(ro) = ~| K~(%ro) ~z~(1 -]- ~ . (16)  
Ko (~lro) (1 " q ) Z  ( 

S u b s t i t u t i n g  (X6) i n t o  t h e  h e a t - b a l a n c e  e q u a t i o n  f o r  t h e  p r o b e  ( 1 3 ) ,  we o b t a i n  an  e x p r e s s i o n  
for the complex amplitude of the temperature fluctuations 

I i )I 0 = ~ 2c'm'r i - -  b| hei' • -- i her' • 1 + 1 + q ~ _ ]f~ ~, 
s s hei • - -  i her • 2 (1 - -  q)2 (1 - -  q)2 ' 
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where • = ro 2~/~7~i -- g/(l -- q); her x and hei • are Thomson functions. The expression for 
@ yields expressions for the amplitude 181 and phase ~ of the temperature fluctuations (the 
lag of the temperature fluctuations behind the fluctuations of power supplied to the probe): 

[ 1 + t~  
W Vhei 2 • q- herZ • her • hei' • -I- 

1 

= l q  t____~ her ' •  + M~ (~2hei'• her'• = ; M~ ( ~  hei' • + r her' ~,) + hei x, -{- • • 

tg q~ = - -  {• (her 2 • + hei~ • + (1 -[- L~)(hei • her' • - -  her • hei' • + 

-b M~ [~, (hei' • her • -- hei • her' • q- #2 (hei • hei' • q her • her' • x 

• {{1 q- L~)(hei • hei' • + her • her' • - -  M~ [~;i (hei' • hei • - -  her' • her • q- q~2 (hei • her' • q- hei' • her • -1,  

where L = (i + q)l[2(1 -- q)a]; M = r -- q)a; ~ _- 4: + i~a. For solutions (q << i) the last 
expressions for the amplitude [8[ and ~ tan ~9 reduce to expressions for one-component liquids 
in which the thermal conductivity is the thermal conductivity of a homogeneous system lo. 
Actually, as q + 0, as -+ ~0 = ro 2~r M + O, L -~ 0.5 and ~N/(1 + L{) -> xon, which reduces 
l@I and tan ~ to forms corresponding to the solution for pure liquids [9], with ~o replacing 

Thus, the method of periodic heating with both plane and cylindrical temperature waves 
can be used to measure the thermal conductivity Xo and the related quantities the thermometric 
conductivity ao = lo/Cpp and the thermal activity bo -- %r in solutions (q << I). 

NOTATION 

%, thermal conductivity; Cp, specific heat; p, density; c: and ca, weight concentrations; 
~g, reduced heat flux; ~t, diffusive flux; T, absolute temperature; t, time; D, interdlf fusion 
coefficient; D', Dufour coefficient; D", thermal diffusion coefficient; KT, thermal diffusion 
ratio; ~, chemical potential; a, thermometric conductivity; b, thermal activity; ~, angular 
frequency of electric current heating probe. 
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